SGLT-1-mediated glucose uptake protects intestinal epithelial cells against LPS-induced apoptosis and barrier defects: a novel cellular rescue mechanism?

نویسندگان

  • Linda C H Yu
  • Andrew N Flynn
  • Jerrold R Turner
  • Andre G Buret
چکیده

Excessive apoptosis induced by enteric microbes leads to epithelial barrier defects. This mechanism has been implicated in the pathogenesis of inflammatory bowel diseases (IBD) and bacterial enteritis. The sodium-dependent glucose cotransporter (SGLT-1) is responsible for active glucose uptake in enterocytes. The aim was to investigate the effects of SGLT-1 glucose uptake on enterocyte apoptosis and barrier defects induced by bacterial lipopolysaccharide (LPS). SGLT-1-transfected Caco-2 cells were treated with LPS (50 mug/mL) in low (5 mM) or high (25 mM) glucose media. LPS in low glucose induced caspase-3 cleavage, DNA fragmentation, and increased paracellular permeability to dextran in epithelial cells. These phenomena were significantly attenuated in high glucose. LPS increased SGLT-1 activity in high, but not low glucose media. Addition of phloridzin, which competitively binds to SGLT-1, inhibited the cytoprotection mediated by high glucose. Western blot showed that LPS in high glucose increased the levels of anti-apoptotic Bcl-2 and Bcl-X(L,) and did not change proapoptotic Bax. Differential extraction of membranous vs. cytosolic cell components demonstrated that high glucose inhibits mitochondrial cytochrome c translocation to cytosol. Collectively, SGLT-1-mediated glucose uptake increases anti-apoptotic proteins, and protects enterocytes from LPS-induced apoptosis and barrier defects. The understanding of this novel glucose-mediated rescue mechanism may lead to therapeutic interventions for various enteric diseases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pathophysiology of enteric infections with Giardia duodenalius.

Giardia is the most prevalent human intestinal parasitic protist in the world, and one of the most common parasite of companion animals and young livestock. Giardia is a major cause of diarrhea in children and in travelers. The host-microbial interactions that govern the outcome of infection remain incompletely understood. Findings available to date indicate that the infection causes diarrhea v...

متن کامل

Sodium-dependent glucose transporter-1 as a novel immunological player in the intestinal mucosa.

In this study, we demonstrate the protective effect of the activation of sodium-dependent glucose transporter-1 (SGLT-1) on damages induced by TLR ligands, in intestinal epithelial cells and in a murine model of septic shock. In intestinal epithelial cell lines, glucose inhibited the IL-8/keratinocyte-derived chemokine production and the activation of the TLR-related transcription factor NF-kap...

متن کامل

Glucose-mediated cytoprotection in the gut epithelium under ischemic and hypoxic stress.

Single-layered intestinal epithelia play key roles in the maintenance of gut homeostasis and barrier integrity. Various types of epithelial cell death, including apoptosis, necrosis, and necroptosis, have been detected in ischemic and hypoxic stress conditions, thus resulting in bacterial translocation and gut-derived septic complications. Cytoprotective strategies, such as enteral glucose upta...

متن کامل

Salidroside regulates the expressions of IL-6 and defensins in LPS-activated intestinal epithelial cells through NF-κB/MAPK and STAT3 pathways

Objective(s): To reveal the detailed mechanism underlying the functions of salidroside on the inflammation of intestinal epithelial cells during IBD.Materials and Methods: Quantitative real-time PCR was employed to assess the expression of IL-6, IL-10, and α-defensins 5 and 6. ELISA assay was performed to measure the secretion of IL-6 and IL-10. MTT assay was used to determine the cell viabilit...

متن کامل

The flavanone homoeriodictyol increases SGLT-1-mediated glucose uptake but decreases serotonin release in differentiated Caco-2 cells

Flavanoids and related polyphenols, among them hesperitin, have been shown to modulate cellular glucose transport by targeting SGLT-1 and GLUT-2 transport proteins. We aimed to investigate whether homoeriodictyol, which is structurally related to hesperitin, affects glucose uptake in differentiated Caco-2 cells as a model for the intestinal barrier. The results revealed that, in contrast to oth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology

دوره 19 13  شماره 

صفحات  -

تاریخ انتشار 2005